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For coded telemetry systems it is important to know the tradeoff between the
error probability and the complexity of implemeniation. For systems using block
codes, the block coding error exponent is a good way to estimate this tradeoff. In
this article we show how the new upper bounds on the minimum distance of
binary codes obtained by McEliece et al. result in improved upper bounds on the
coding error exponents for binary input memoryless channels.

Consider a binary-input memoryless channel with input
alphabet A = {0,1} output alphabet B, and transition
probabilities {p(y|x) : x€A,yeB}. Let C = {x,,X, *** Xur}
be a binary code of length n and rate R = n-'log, M for
this channel, and assume that each of the M codewords
is sent with probability 1/M. Let d,,:.(C) denote the
minimum Hamming distance between distinct code-
words, and let P,(C) denote the probability of maximum-
likelihood decoder error when the code C is used on the
given channel.

Now define
8(n,R) = %max dnin(C) (1)
P.(n,R) = min P,(C) (2)
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where the maximum and minimum in (1) and (2) are
taken over the set of all codes of length n and rate > R.
And finally define

8(R) = lim &(n,R) (3)

n—>w0

E(R) = lim — log, P.(n,R). (4)

N> 0

The maximum minimum distance §R) is unknown ex-
cept at the points R = 0,1 : §(0) = 1/2, §(1) = 0. The block
coding crror exponent E(R) is known only for R = 0 and

1These limits are not known to exist. However, in what follows
every upper bound is an upper bound on the corresponding lim
sup’s, and the lower bounds are lower bounds on the lim inf’s, so
there is no harm in pretending the limits exist.
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R > Rerit, Reri: being a number to be defined below. We
shall now briefly survey the known upper and lower
bounds on E(R), and indicate how the new upper bound
3*(R) on §(R) obtained in Ref. 1 can be used to improve
the known upper bounds on E(R) for small values of R.

First, the sphere-packing bound E,,(R) and the random
coding bound E.(R), valid for all rates R less than
channel capacity (Refs. 2, 3):

E.(R) < E(R) < Es4(R). (5)

The two bounds in (5) are equal for sufliciently large
R, and in fact the number R.,;; cited above is the point
where these two bounds meet. (Formulas for E, and E,,
for binary symmetric and binary erasure channels are
given in the Appendix.)

Next, we have bounds which depend on the
Bhattacharyya parameter (Refs. 4, 5) for the channel,
which is defined by

o= —log, y_ (p(y|0)p(y| 1))

yeb

These bounds are
oD < E(R) < ad(R) (6)

where 0 < D < 1/2 is defined implicitly by R =1 — H,(D),
where Hy(x) is the binary entropy function. (The lower
bound in (6) is called the expurgated bound E..(R);
it is only valid for 0 < R < R’, where R’ is the rate at
which the expurgated bound meets the random coding

bound.) As mentioned, the function &R) is unknown, so
the upper bound in (6) is ineffective. However, by
using the bound §(R) < 8*(R) obtained in Ref. 1 (for
numerical values of 8*(R), see Table 1 in Ref. 1), we
obtain an upper bound

E(R) < a8*(R) )

which can be evaluated, and which is already better than
any previously known upper bound for small values of R.

Finally, Shannon et al. (Ref. 3) have shown that if
E(R) is any upper bound to E(R), then so is the convex
hull of the curves E,(R) and E,,(R). In particular, by
taking E,(R) = (1/2)a (from (6) and the fact that
8(0) = 1/2), we see that E(R) is bounded from above by
the line passing through the point (0,(1/2)a) which is
tangent to E.,(R). This bound is called the straight-line
bound E(R). However by taking E,(R) = o8*(R)
(cf. (7)) we can obtain an upper bound which is signifi-
cantly better than min (E(R), E,,(R)) for a considerable
range of R’s. We illustrate this in Fig. 1 with a binary
symmetric channel with crossover probability € = 0.01,
a = —fog, v4e(l — €) = 2329, and in Fig. 2 with a
binary erasure channel with erasure probability € = 0.01,
a = —Jog, € = 6.644. In both figures the unknown region
for 0 < R < Resi¢ in which E(R) lies is shaded. A final
point worth mentioning is that the new upper bound
(7) on E(R) always matches the expurgated bound
E.(R) in slope at R = 0. (Both slopes are — oo; this is
well known for the expurgated bound, and follows for
the bound (7) from the results of Ref. 1.) This fact
supports the conjecture that E(R) = E..(R) for R < R.ri:
for binary input channels.
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Appendix
E. (R) and E, (R) for Binary Symmetric and Binary Erasure Channels

For a binary symmetric channel with crossover probability €, the random coding exponent is given by

1—R—log,(1+V4e(1—€) O0<R<1—H,(\e/(Ve+ V1 —¢)
E,(R) =
T{D) — Hx(D) 1 — Ho(Ve/(Ve+ V1 —€) SRS 1~ Hyfe)
where Te¢(D) = —Dlog,e — (1 — D)log, (1 — €), and D satisfies (7). The sphere packing exponent is
E(R) =T«D) — HyD) O0<R<1-— Hye).

(Hence Reni: =1 — Hy(Ve/(\e+ VI —¢€) and E(R) = E(R) = E(R) for R > Re,i:.) For the binary erasure chan-
nel with erasure probability e:

1—R—log,(1+¢ O<R<1—2/(1+¢
E.R) =
®) E.(R) 1-2/(1+e <R<L1—¢

where

pe2e

E.(R) = T &

— log, ((1 — €) + €2°),

where p is determined by R = 1 — €2°/(1 — € + €2°).
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Fig. 1. A binary symmetric channel
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Fig. 2. A binary erasure channel
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